Shielded radiography with a laser-driven MeV-energy X-ray source

نویسندگان

  • Shouyuan Chen
  • Grigory V. Golovin
  • Cameron Miller
  • Daniel Haden
  • Sudeep Banerjee
  • Ping Zhang
  • Cheng Liu
  • Jun Zhang
  • Baozhen Zhao
  • Shaun Clarke
  • Sara Pozzi
  • Donald Umstadter
چکیده

We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeVenergy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed Xray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ~100 nGy/ pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The Xray beam’s inherently low-divergence angle (~mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از شتابگر الکترونی MeV 10 برای تولید تابش چرنکوف درناحیه پرتوایکس نرم

Cherenkov radiation is generated when relativistic charged particles move in a medium with refractive index larger than unity. Although, the refractive index is generally smaller than unity in X-ray region, in the vicinity of atomic absorption edges, the refractive index may exceed unity and Cherenkov radiation can be generated in soft X-ray region with a narrow band width. In this paper, the s...

متن کامل

MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons.

We report the generation of MeV x rays using an undulator and accelerator that are both driven by the same 100-terawatt laser system. The laser pulse driving the accelerator and the scattering laser pulse are independently optimized to generate a high energy electron beam (>200  MeV) and maximize the output x-ray brightness. The total x-ray photon number was measured to be ∼1×10(7), the source ...

متن کامل

Design Consideration on Position Sensitive Detectors Based on LuAG:Pr Scintillators for High Energy X-ray Cargo Inspection

To prevent illegal trade of weapons, X-ray scanning systems are used for non-intrusive inspection of import containers and cargoes at every seaport and airport. Conventional X-ray scanning system for cargoes is based mainly on X-rays of several MeV energy generated by an electron Linac. For high quality X-ray imaging, an X-ray source with good directionality, narrow width of energy spectrum and...

متن کامل

Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime.

We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ra...

متن کامل

Monochromatic computed tomography with a compact laser-driven X-ray source

A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017